

1. INTRODUCTION

UNIT -2

Getting Stating with Python

• Computers are used for solving various day-to-day problems.

• It is pertinent to mention that computers themselves can not solve a problem.

• Precisestep-by-stepinstructionsshouldbegivenbyustosolvetheproblem.

• Thus, the success of a computer in solving a problem depends on how

correctly and precisely we define the problem, design a solution

(algorithm) and implement the solution (program) using a programming

language.

• Thus, problem solving is the process of identifying a problem, developing

an algorithm for the identified problem and finally implementing the

algorithm to develop a computer program.

2. Steps for ProblemSolving

There are four steps in problem solving

• Analysing the problem, Developing an Algorithm, Coding, Testing

and Debugging

2.1 Analysing the problem

• It is important to clearly understand a problem before we begin to find

the solution for it.

• If we are not clear as to what is to be solved,we may end up developing

a program which may not solve our purpose.

• By analysing a problem, we would be able to figure out what are

• the inputs that our program should accept and the outputs that it should

produce.

2.2 Developing an Algorithm

• The solution for a problem is represented in step by step procedure called
analgorithm.

• For a given problem, more than one algorithm is possible and we have to

select the most suitable solution.

2.3 Coding

• After finalising the algorithm, we need to convert the algorithm into the

format which can be understood by the computer to generate the

desired solution.

2.4 Testing and Debugging

• The program created should be tested on various parameters.

• The program should meet the requirements of the user.

• In the presence of syntactical errors, no output will be obtained.

• In case the output generated is in correct, then the program should be

checked for logical errors, if any.

3. Algorithm

Algorithm is the step by step procedure for solving the problem. Suppose following are

the steps required for an activity ‘riding a bicycle’:

• Remove the bicycle from the stand,

• Sit on the seat of the bicycle,

• Start peddling,

• Use breaks when ever needed and

• Stop on reaching the destination.

Example:

Algorithm to find square of anumber.

Step1: Input a number and store it to num

Step 2: Compute num * num and store

it in square

Step 3:Print square

3.1 Why do we need an Algorithm

• Writing an algorithm is mostly considered as a first step to programming.

• Once we have an algorithm to solve a problem, we can write the

computer program for giving instructions to the computer in high level

language.

• If the algorithm is correct, computer will run the program correctly, everytime.

• So, the purpose of using an algorithm is to increase the reliability,

accuracy and efficiency of obtaining solutions.

Characteristics of a good algorithm

• Precision—the steps are precisely stated or defined.

• Uniqueness—results of each step are uniquely defined and only

depend on the input and the result of the preceding steps.

• Finiteness—the algorithm always stops after a finite number of steps.

• Input—the algorithm receives some input.

• Output—the algorithm produces some output.

While writing an algorithm ,it is required to clearly identify the following:

• The input to be taken from the user

• Processing or computation to be performed to get the desired result

• The output desired by the user

4. Representation of Algorithms

There are two common methods of representing an algorithm —flowchart and

pseudocode. Either of the methods can be used to represent an algorithm while keeping

in mind the following:

• it show cases the logic of the problem solution, excluding any

implementational details

• it clearly reveals the flow of control during execution of the program

4.1 Flowchart —Visual Representation of Algorithms

• A flow chart is a visual representation of an algorithm.

• A flowchart is a diagram made up of boxes, diamonds and other shapes,

connected by arrows.

Flow chart to calculate square of a number

4.2 Pseudocode

A pseudocode (pronounced Soo-doh-kohd) is another way of representing an algorithm. It is considered as

a non-formal language that helps programmers to write algorithm. The word“pseudo” means “not real,” so

“pseudocode” means “not real code”. Following are some of the frequently used keywords while writing

pseudocode:

• INPUT/•COMPUTE/•PRINT/•INCREMENT/•DECREMENT

• IF/ELSE,•WHILE,•TRUE/FALSE

Example:

Pseudo code for the sum of two numbers will be:

Input num1

input num2

COMPUTE Result = num1 + num2

PRINT Result

4.3 Coding

• Once analgorithm is finalised,it should be coded in ahigh-level

programming language as selected by the programmer.

• The ordered set of instructions are written in that programming language

by following its syntax.

• Syntax is the set of rules or grammar that governs the formulation of the

statements in the language,such as spellings,order of words,

punctuation,etc.

4.4 Decomposition

• The basic idea of solving a complex problem by decomposition is to

'decompose' or break down a complex problem into smaller sub problems.

Answer the Following Questions (Very ShortAnnswers)

1. Define Algorithm

2. What is decomposition?

3. Why do we need Algorithm?

4. What is meant by Debugging?

Answer the Following Questions (Short Answers)

1. Write an algorithm to find the greatest among two different numbers.

2. Write a pseudo code to calculate the factorial of a number.

3. Write an algorithm to find greater among three numbers

Answer the Following Questions (Long Answers)

1. Write pseudo code and draw flow chart to accept number still the user enters

and then find their average.

2. Write a pseudocode and draw a flowchart where multiple conditions are

checked to categorize a person as either child(<13), teenager(>=13but<20)

or adult(>=20),based on age specified:

3. Write an algorithmth at accepts four numbers as input and find the largest

and smallest of them.

PYTHON PROGRAMMING FUNDAMENTAL:

5.1.1 Features of Python

• Python is a high level language. It is a free and open source language.

• It is an interpreted language, as Python programs are executed by an interpreter.

• Python programs are easy to understand as they have a clearly defined syntax and relatively simple

structure.

• Python is case-sensitive. For example, NUMBER and number are not same in Python.

• Python is portable and platform independent, means it can run on various operating systems and

hardware platforms.

• Python has a rich library of predefined functions.

• Python uses indentation for blocks and nested blocks.

How to Install Python

• Python is pre-installed on most Unix systems, including Linux and MAC OS X

• The pre-installed version may not be the most recent one (2.6.2 and 3.1.1 as of Sept 09)

• Download from http://python.org/download/

• Python comes with a large library of standard modules

• There are several options for an IDE

IDLE – works well with Windows

IDLE (Integrated Development Environment)

• IDLE is an Integrated DeveLopment Environment for Python, typically used on Windows

• Multi-window text editor with syntax highlighting, auto-completion, smart indent and other.

• Python shell with syntax highlighting.

• Integrated debugger with stepping, persistent breakpoints,

and call stack visibility

http://python.org/download/

5.1.2 Working with Python

To write and run (execute) a Python program, we need to have a Python interpreter installed on our

computer or we can use any online Python interpreter. The interpreter is also called Python shell. A

sample screen of Python interpreter is shown in Figure:

In the above screen, the symbol >>> is the Python prompt, which indicates that the interpreter is

ready to take instructions. We can type commands or statements on this prompt to execute them

using a Python interpreter.

5.1.3 Execution Modes

There are two ways to use the Python interpreter:

a) Interactive mode

b) Script mode

Interactive mode allows execution of individual statement instantaneously. Whereas, Script mode

allows us to write more than one instruction in a file called Python source code file that can be executed.

(A) Interactive Mode

To work in the interactive mode, we can simply type a Python statement on the >>> prompt directly.

As soon as we press enter, the interpreter executes the statement and displays the result(s), as shown in

Figure:

Working in the interactive mode is convenient for testing a single line code for instant execution. But

in the interactive mode, we cannot save the statements for future use and we have to retype the

statements to run them again.

(B) Script Mode

In the script mode, we can write a Python program in a file, save it and then use the interpreter to

execute it. Python scripts are saved as files where file name has extension “.py”. By default, the Python

scripts are saved in the Python installation folder. To execute a script, we can either:

a) Type the file name along with the path at the prompt. For example, if the name of the file is prog5-

1.py, we type prog5-1.py. We can otherwise open the program directly from IDLE.

b) While working in the script mode, after saving the file, click [Run]->[Run Module] from the menu

as shown in Figure below.

c) The output appears on shell as shown in figure below:

Program 5-1 Write a program to show print statement in script mode.

Basic DataTypes:

• Integers (default for numbers)- Number without decimal point
z = 5 / 2 # Answer 2.5, integer division

• Floats : Number with decimal Point
x = 3.456

• Strings -
Can use “” or ‘’ to specify with “abc” == ‘abc’

Use triple double-quotes for multi-line strings or strings than contain both ‘ and “ inside of

them:
“““a‘b“c”””

Comments :

• Comments are very important while writing a program. It describes what's going
on inside a program so that a person looking at the source code does not have a
hard time figuring it out.

• In Python, we use the hash (#) symbol to start writing a comment.
• If we have comments that extend multiple lines, one way of doing it is to use hash

(#) in the beginning of each line.
• For example:

#This is a long comment
#and it extends
#to multiple lines

• Another way of doing this is to use triple quotes, either ''' or """.
• These triple quotes are generally used for multi-line strings. But they can be used

as multi-line comment as well.

"""This is also a
perfect example of
multi-line comments"""

Assignment :

• Binding a variable in Python means setting a name to hold a reference to some object
Assignment creates references, not copies

• Names in Python do not have an intrinsic type, objects have types
Python determines the type of the reference automatically based on what data is assigned to

it
• You create a name the first time it appears on the left side of an assignment expression:

x = 3

• A reference is deleted via garbage collection after any names bound to it have passed out of
scope

• Python uses reference semantics (more later)
• You can assign to multiple names at the same time

>>> x, y = 2, 3
>>> x
2
>>> y
3

• This makes it easy to swap values

>>> x, y = y, x

• Assignments can be chained

>>> a = b = x = 2

Python keywords
Reserved words in the library of a language.There are 3 3keywords in python.

All the keywords are in lowercase except 03 keywords(True, False, None)

Identifier

• An identifier is a name given to entities like class, functions, variables, etc.
• It helps to differentiate one entity from another.

Rules for naming Identifier :

• Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A
to Z) or digits (0 to 9) or an underscore _.

• Names like myClass, var_1 and print_this_to_screen, all are valid example.
• An identifier cannot start with a digit. 1variable is invalid, but variable1 is

perfectly fine.
• Keywords cannot be used as identifiers.
• We cannot use special symbols like !, @, #, $, % etc. in our identifier.

bob Bob _bob _2_bob_ bob_2 BoB

• There are some reserved words:

and, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global,
if, import, in, is, lambda, not, or, pass, print, raise, return, try, while

Program : Write a program to display values of variables in Python.

#To display value of variable

message = "hello"

print(message)

)

Output:

Hello

Program : Write a Python program to find the area of a rectangle given that its length is 10 units and

breadth is 20 units.

#To find the area of a rectangle

length = 10

breadth = 20

area = length * breadth

print(“Area of Rectangle=”, area)

Output: 200

Do it yourself:

1. Write a Python program to find the sum and subtract of two numbers
2. Find the simple interest. Principle amount, rate of interest and time given by user.

Constants

• A constant is a type of variable whose value cannot be changed.

• It is helpful to think of constants as containers that hold information which cannot be changed
later.

Literals

• Literals

• Literal is a raw data given in a variable or constant. In Python, there are various types of
literals they are as follows:

• Numeric Literals

• Numeric Literals are immutable (unchangeable). Numeric literals can belong to 3

different numerical types Integer, Float and Complex.

• a = 0b1010 #Binary Literals

• b = 100 #Decimal Literal

• c = 0o310 #Octal Literal

• d = 0x12c #Hexadecimal Literal

• #Float Literal

• float_1 = 10.5

• float_2 = 1.5e2

• #Complex Literal

• x = 3.14j

• print(a, b, c, d)

• print(float_1, float_2)

• print(x, x.imag, x.real)

OUTPUT
10 100 200 300
10.5 150.0
3.14j 3.14 0.0

Python Data Types

Built-in Data Types

In programming, data type is an important concept. Variables can store data of different types, and

different types can do different things. Python has the following data types built-in by default, in

these categories:

 Str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozen set

Boolean Type: bool

Binary Types:

bytes, byte array, memory view

Let us now try to execute few statements in interactive mode to determine the data type of the

variable using built-in function type().

Example :

>>> num1 = 10

>>> type(num1)
<class 'int'>

>>> num2 = -1210

>>> type(num2)

<class 'int'>

>>> var1 = True

>>> type(var1)

<class 'bool'>

Operators

An operator is used to perform specific mathematical or logical operation on values. The values that

the operators work on are called operands. For example, in the expression 10 + num, the value 10, and

the variable num are operands and the + (plus) sign is an

operator. Python supports several kinds of operators whose categorisation is briefly explained in this

section

Python divides the operators in the following groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Logical operators

• Identity operators

• Membership operators

Concatenation
Concatenating means obtaining a new string that contains both of the original strings. In Python, there
are a few ways to concatenate or combine strings. The new string that is created is referred to as a
string object. In order to merge two strings into a single object, you may use the + operator.

For Example

>>>”CBSE “+”India”

Output is CBSEIndia

Replication. : The multiplication operator acts as a replication operator when we have one string
and one integer as operands. What is replication? First, understand the meaning of the word

replication.
>>>”CBSE” 3

Output is CBSECBSECBSE

Statement

In Python, a statement is a unit of code that the Python interpreter can execute.

Example

>>> x = 4 #assignment statement

>>> cube = x ** 3 #assignment statement

>>> print (x, cube) #print statement

4 64

• Multi-line statement

In Python, end of a statement is marked by a newline character. But we can make a statement

extend over multiple lines with the line continuation character (\).

For example:

a = 1 + 2 + 3 + \

4 + 5 + 6 + \

7 + 8 + 9

Input and Output

Sometimes, a program needs to interact with the user’s to get some input data or information from

the end user and process it to give the desired output. In Python, we

have the input() function for taking the user input. The input() function prompts the user to enter data.

It accepts all user input as string. The user may enter a number or a string but the input() function treats

them as strings only. The syntax for input() is:

input ([Prompt])

Example

>>>fname = input("Enter your first name: ")

Enter your first name: Arnab

>>> age = input("Enter your age: ")

Enter your age: 19

>>> type(age)

<class 'str'>

Example

#function int() to convert string to integer

>>> age = int(input("Enter your age:"))

Enter your age: 19

>>> type(age)

<class 'int'>

Example

Statement Output

print("Hello") Hello

print(10*2.5) 25.0

print("I" + "love" + "my" + "country") Ilovemycountry

print("I'm", 16, "years old") I'm 16 years old

More Examples:

print(1,2,3,4)

Output: 1 2 3 4

print(1,2,3,4,sep='*')

Output: 1*2*3*4

print(1,2,3,4,sep='#',end='&')

Output: 1#2#3#4&

Type Conversion

The process of converting a Python data type into another data type is known as type conversion.
There are mainly two types of type conversion methods in Python: implicit type conversion and explicit
type conversion

Explicit Conversion

Explicit conversion, also called type casting happens when data type conversion takes place because

the programmer forced it in the program. The general form of an explicit data type conversion is:

(new_data_type) (expression)

With explicit type conversion, there is a risk of loss of information since we are forcing an expression

to be of a specific type. For example, converting a floating value of x = 20.67 into an integer type, i.e.,

int(x) will discard the fractional part .67. Following are some of the functions in Python that are used

for explicitly converting an expression or a variable to a different type.

Explicit type conversion functions in Python

Function Description

int(x) Converts x to an integer

float(x) Converts x to a floating-point number

str(x) Converts x to a string representation

chr(x) Converts x to a character

Program of explicit type conversion from int to float.

#Explicit type conversion from int to float

num1 = 10

num2 = 20

num3 = num1 + num2

print(num3)

print(type(num3))

num4 = float(num1 + num2)

print(num4)

print(type(num4))
Output:

30

<class 'int'>

30.0

<class 'float'>

Implicit Conversion

Implicit conversion, also known as coercion, happens when data type conversion is done

automatically by Python and is not instructed by the programmer.

Program to show implicit conversion from int to float.

#Implicit type conversion from int to float

num1 = 10 #num1 is an integer

num2 = 20.0 #num2 is a float

sum1 = num1 + num2 #sum1 is sum of a float and an integer

print(sum1)

print(type(sum1))

Output:

30.0

<class 'float'>

MCQ:
Q.1 Who developed the Python language?

a) Zim Den
b)Wick van Rossum
c) Guido van Rossum
d) NieneStom

Q.2.. Which of the following is an invalid variable?

a) my_string_1
b) 1st_string
c) foo
d) _amount

Q.3.. Which one of these is floor division?

a) /
b) //
c) %
d) None of the mentioned

Q.4.. Which character is used in Python to make a single line comment?

a) /
b) //
c) #
d) !

Q.5.. If x=3.123, then int(x) will give ?

a) 1

b) 0

c) 1

d) 3

Answers :

Q.1. C Q.2. B Q.3. B

Q.4. C Q.5. D

Practice Questions

1. Write a Python program to convert temperature in degree Celsius to degree Fahrenheit. If water

boils at 100 degree C and freezes as 0 degree C, use the program to find out what is the boiling

point and freezing point of water on the Fahrenheit scale.

(Hint: T(°F) = T(°C) × 9/5 + 32)

2. Write a Python program to calculate the amount payable if money has been lent on simple

interest. Principal or money lent = P, Rate of interest = R% per annum and Time = T years.P,R,T

are given by user. Then Simple Interest (SI) = (P x R x T)/ 100.

3. Amount payable = Principal + SI

4. Write a program to enter two integers and perform all arithmetic operations on them.

5. Write a program to swap two numbers using a third variable.

6. Write a program to swap two numbers without using a third variable.

DEBUGGING

Errors occurring in programs can be categorized as:

i) Syntax error

ii) Logical error

iii) Run Time error

Syntax Errors

Python has its own rules that determine its syntax. The interpreter

interprets the statements only if it is syntactically (as per the rules of

Python) correct. For example, parentheses must be in pairs, so the

expression (10 + 12) is syntactically correct, whereas (7 + 11 is not due

to absence of right parenthesis. Such errors need to be removed before

the execution of the program

Logical Errors

Logical errors are also called semantic errors as they occur when the

meaning of the program (its semantics) is not correct.For example, if

we wish to find the average of two numbers 10 and 12 and we write

the code as 10 + 12/2, it would run successfully and produce the result

16. Surely, 16 is not the average of 10 and 12. The correct code to find

the average should have been (10 + 12)/2 to give the correct output as

11.

Runtime Error

A runtime error causes abnormal termination of program while it is

executing. Runtime error is when the statement is correct syntactically,

but the interpreter cannot execute it. Runtime errors do not appear

until after the program starts running or executing.

Flow of Control

Sequential flow : In sequential flow instructions of a program are executed

one after the another

Conditional Flow : In Conditional flow , flow of control of instructions in a

program are changed based on a condition.

Iterative Flow : In iterative flow , a set of instructions are executed repeatedly

based on a certain condition

Flow control statements are used to control the flow of e x e c u t i o n depending

upon the specified condition/logic.

There are three types of control statements.

Decision Making Statements /If control statement
Iteration Statements(Loop control statement, for, while)
Jump Statements(break,continue)

Decision Making Statements /If control statement

Decision making statement used to control the flow of execution of
program depending upon condition.
Types of decision making statement.

1. If statements

2. if-else statements

3. if-else-elif ladder

if statements
An if statement is a programming conditional statement that, if proved true,

performs a function or displays information.
Syntax

if <condition>:

Statement(s)

Example:

a=2

b=3

if a < b :

print(‘a is greater’)

Output : a is greater

48

if-else statement

The statements inside the if block are executed only when condition is True,

otherwise the statements in the else block are executed.

Syntax

if <condition>:

Statement(s)
else:

statements

Flow Chart

Example:

a=5

b=6

if a < b :

print(‘b is greater’)

else:

print(‘a is greater’)

Output : b is greater

if elif statement

The if...elif...else statement allows you to check for multiple test expressions and execute

different codes for more than two conditions.

FlowChart

Example :

if 51<5:

print("False, statement skipped")

elif 6<5:

print("False, statement skipped")

elif 0<3:

print("true, block will execute")

else:

print("If all fails.")

output : true, block will execute

49

Iteration statements

Iteration statements(loop) are used to execute a block of statements as long as the condition
is true.

Python Iteration (Loops) statements are of three type:-

1. while Loop

2. for Loop

WHILE LOOP

It is used to execute a block of statement if a given condition is true. And when the

condition become false, the control will come out of the loop. The condition is checked

every time at the beginning of the loop.

Syntax

while(condition) :

[statement]

Example :
count =0

while(count <2):

count=count +1

print("Hello")

FOR LOOP

Output : Hello

Hello

It is used to iterate over items of any sequence, such as a list or a string.

Syntax

for val in sequence: #here val will take value of each element in the sequence

statements

50

Example:
for i in [1,2,3,4,5]:

print(i*5)

OUTPUT:
5

10

15

20

25

range() Function

This function generates a sequence of numbers based on the parameters passed.

Parameters

start: Starting number of the sequence.

stop: Generate numbers up to, but not including this number.

step(Optional): Determines the increment between each numbers in the sequence.

Python use range() function in three ways:

a. range(stop) : By default, It starts from 0 and increments by 1 and ends upto

stop, but not including stop value.

fori inrange(5):

print(i, end=" ")

Output : 0 1 2 3 4

b. range(start,stop) : It starts from the start value and upto stop, but not

including stop value.

fori inrange(5, 10):

print(i, end=" ")

Output : 5 6 7 8 9

c. range(start,stop,step): Third parameter specifies to increment or decrement the

value by adding or subtracting the value.

fori inrange(0, 10, 2):

print(i, end=" ")

Output : 0 2 4 6 8

BREAK STATEMENT

It is used to terminate the loop.

51

Example

for val in "string":

if val == "i":

break

print(val, end=””)

print("The end")

Output: s t r The end

CONTINUE STATEMENT
• Used to skip the rest of the statements of the current loop block and to move
to next iteration, of the loop.
• Continue will return back the control to the beginning of the loop.
Example

for letter in ‘Python’:

if letter == ‘h’:

continue

print (letter)

Output

Pyton

Nested Loops

Nested loops mean loops inside a loop. For example, while loop inside the for loop, for loop

inside the for loop, etc.

52

SOLVED QUESTIONS

MCQ (1 mark)

Q1:Which keyword is used to add multiple conditions in a statement?
1. if
2. else
3. elif
4. while

Ans : 3. elif

Q2 : Choose correct output :

namesl = [‘Amir’, ‘Barry’,Chales’,‘Dao’]
if ‘amir’ in namesl:

print 1
else:

print 2

1. 1

2. 2

3. Error

4. 12

Ans : 2. 2

Q3 : Find correct output :

x=3

if x>2 or x<5 and x==6:
print("ok")

else:
print("no output")

1. Ok
2. no output
3. error
4. ok no output

Ans : 2. No output

53

Q4 : Which keyword is used to terminate the looping in Python when certain condition is
met ?

1. Break
2. Continue
3. Raise
4. Pass

Ans 1. Break

Q5. What will be the output of the following Python code?

i = 1
while True:

if i % 3 == 0:
bre

ak
print(i)
i + = 1

1. 1 2
2. 1 2 3
3. Error
4. None of the mentioned

Ans : 1. 1 2

Q 6 : Which of the following sequences would be generated in the given line of code?

range (5,0, -2)

1. 5 4 3 2 1 0 -1
2. 5 3 1 -1
3. 5 3 1
4. 5 3
5.

Ans : 3. 5 3 1

54

Very Short Answer type Questions (2 marks)

Q1 : Find output

x=True
y=False
z=False
if x or y and z:

print("YES")
elif x and y or z:

print("yes")
else:

print("no")

Ans : no

Q2 . What is the output for the following code
i=1

while(i<=7):

i*=2
print(i)

Ans : 128

Q3. What is the difference between break and continue statements?

Ans:
Break: breaks the iteration of loop when a certain condition is met .
Continue : skip the rest of the statements of the current loop block and to move to

next iteration, of the loop.

Q4. Write a program to print the sum of series: s=1+x+x2+x3…..+xn
Ans :
s=0

x=int(input(“enter x”))
for i in range(1,n+1):

s=s+x**i
print(s)

55

Q5 . Write a Python program that accepts two integers from the user and prints a

message saying if first number is divisible by second number or if it is not?

Ans:

x=int(input(“enter first number”))

y=int(input(“enter second number”))

if(X%Y ==0):

print(x, “is divisible by”,y)

else :

print(x,”is not divisible by “ , y)

Syntax Error Logical Error

Syntax Errors occur when we violate the
rules of writing the statements of the
programming language.

Logical Errors occur due to our
mistakes in programming logic.

Program fails to compile and execute. Program compiles and executes but
doesn't give the desired output.

Syntax Errors are caught by the compiler. Logical errors need to be found and
corrected by people working on the
program.

Example : print(“hello) . closing ” is missing Example : average=a+b/2 gives
incorrect value for average of a and b
.

Q6. Differentiate between Syntax Error and Logical Error with Example.

Short Answer Type Questions (3 marks)

Q 1 Write a program to print grade of a student as per input percentage as per criteria

given below:-

Percentage range Grade

>=90 A

75<=89 B

60<=74 C

40<=59 D

>=40 E

56

Ans:
perc= int(input(“enter percentage”))

if(perc>=90):
Print(“ grade A”)
elif(perc>=75 and perc< 89) :

Print (“ grade B “)
elif(perc>= 60 and perc< 74) :

Print(“grade C”)
elif(perc>=40 and perc< 60):

Print(“grade D”)
else:

Print(“E”)

Q2. Write a program to find maximum of 3 integers entered by user .

Ans :
a=int(input ("Enter First Number ?"))
b=int(input("Enter First Number ?"))
c=int(input("Enter First Number ?"))
if (a>b) and (a>c) :

print ("Max number is ",a)
if (b>a) and (b>c) :

print ("Max number is ",b)
if (c>a) and (c>b) :

print ("Max number is ",c)

Long answer question (5marks)

Q2. Q1 Write python code to Generate following pattern using Nested loop
*
* *
* * *
* * * *
* * * * *

Ans :

n = int(input("Enter the number of rows"))

outer loop to handle number of rows

57

for i in range(0, n):

for j in range(0, i + 1):

print("* ", end="")

ending line after each row

print()

Unsolved questions :

MCQs

Q1 : How do we differentiate the body of the loop from the rest of the code?

1. Writing loop above.
2. Writing loop below the whole code.
3. Using proper indentation.
4. All are correct.

Q2: Which of the following is False regarding loops in Python?

A. Loops are used to perform certain tasks repeatedly.
B. While loop is used when multiple statements are to executed repeatedly until the given

condition becomes False
C. While loop is used when multiple statements are to executed repeatedly until the given

condition becomes True.
D. for loop can be used to iterate through the elements of lists.

Q3 : The statement skips the rest of the loop statements and causes the next

iteration of the loop to take place.
1. Break
2. Continue
3. Raise
4. Pass

58

VSA (2marks)

Q1. Rewrite the following code after removing syntax errors :

name = ("Enter Name :")
age = int(input("Enter Age: ")
if age >=18

print(name, “is eligible for driving license")
else

print(name, "isot eligible for driving license")

Q2 . Find Output

i=0

while (i<10):

i=i+1

if i==5:

break

print(i,end=” “)

Q3 Find ouput of following code :

for x in range(0,10,2):

print(x,"#", end=' ')

SA (3 marks)

Q1. Write a program to find sum of all even numbers from 1 to 100.
Q2.Write a program which accept Sales Amount from user then calculate and print discount

amount per following criteria :

Sales Amount Discount

Less than 5000 5% of Sales Amount

5001 to 10000 7% of sales Amount

More than 10000 10% of Sales Amount

(e.g. if Sales amount is 400 then Discount amount would be 400*5/100 i.e. 20)

59

LA (5 marks)

Q1 Write a python program to accept age of a person from user and check whether he
has completed 18 years or more. If yes print ‘Eligible for Voting’ or otherwise print ‘Minor’.

Q2 Write a program in python to print the table of a number given by the user using
for loop

STRING MANIPULATION

Strings: Sequence of characters that is enclosed in single or double quotes referred as String.

Strings are immutable. Various string operations are as follows:-

Operators Syntax Description

+ (Concatenation) Str1+Str2 Adds or join two or more strings

*(Repetition) Str*3 *operator creates a new string by

repeating multiple copies of the same

string.

in/not in

(Membership)

‘M’ in ‘Mumbai’

‘M’ not in ‘mumbai’

Returns true if character exist in given the

string and return false if the given

character does not exist in the string

[:] (range(start, stop,

step)

Str[1:8:2] Extracts the characters from the given

range or to extract a subset of values.

[] Slice[n:m] Str[2:7] Extracts the characters from the given

index

Traversing a String for i in range(len(str)): iterate through the elements of a

string,one character at a time.

String Methods and Built-in functions:

Function/Method syntax Description

len() len (str) Returns the length of the string

count() str.count(sub, start, end) It returns number of times substring

str occurs in the given string.

split() str.split(“,”) Breaks up a string at the specified

separator and returns a list of

substrings

capitalize() str.capitalize () Converts the first letter of the string in

uppercase

title() str.title() It returns the string with first letter of

every word in the string in uppercase

and rest in lowercase.

60

find() str.find (sub, start, end) It is used to search the first occurrence
of the substring in the given string.

replace() str.replace (old, new) It replaces all the occurrences of the
old string with the new string.

index() index(substr, start, end) It also searches the first occurrence

and returns the lowest index of the
substring.

lower() str,lower () It converts the string into lowercase

islower() str.islower () It returns True if all the letters in the
string are in lowercase otherwise false

upper() str.upper() It converts the string into uppercase

isupper() str.isupper () It returns True if all the letters in the

string are in uppercase otherwise
false.

isalpha() str.isaplha () It checks for alphabets in an inputted

string and returns True in string

contains only letters else false.

isalnum() str.isanum () It returns True if all the characters are
alphanumeric else false.

isdigit() str.sidigit () It returns True if the string contains
only digits, otherwise false.

lstrip() str.istrip(chars)
str.istrip()

It returns the string after removing the
space from the left of the string

rstrip() str.restrip(chars)
str.rstrip()

It returns the string after removing the
space from the right of the string

strip() str.strip() It returns the string after removing the
space from the both side of the string

index() str.index(substring) It returnsthe index position of an

element or an item in a string of

characters or a list of items.

startswith() string.startswith(substring,

start, end)

It returns True if the string starts with

the given substring, and False

otherwise.

partition() str.partition(separator) It splits a given string into three parts

based on the first occurrence of a

specified separator. It returns a tuple

containing the three parts: the portion

before the separator, the separator

itself, and the portion after the

separator.

join()

separator.join(iterable)
It is used to concatenate elements

from an iterable (like a list or tuple)

into a single string, with a specified

separator between each element.

endswith() string.endswith(substring,

start, end)

It returns True if the string ends with

the given substring, and False

otherwise.

61

MULTIPLE CHOICE QUESTIONS (MCQ)-1 Mark

1 Which of the following operations on a string will generate an error?

(a) "PYTHON"*3 (b) "PYTHON" + "20"
(c)"PYTHON" + 10 (d) "PYTHON" + "LANGUAGE"

2 If the following code is executed, what will be the output of the following

code?

name="Computer_Science_with_Python"

print (name [-25:10])

(a) puter_S (b) hon (c) puter_Science (d) with python

3 Which of the following functions will return the total number of characters in a

string?
count () b) index() c) len() d) all of these

4 Which of the following functions will return the last three characters of a string

s ?
s[3:] b) s[: 3] c) s[-3:] d) s[: -3]

5 Which of the following functions will raise an error if the given substring is not

found in the string ?
a) find() b) index() c) replace() d) all of these

6 Which of the following functions removes all leading and trailing spaces from a

string ?
a) lstrip() b) rstrip() c) strip() d) all of these

7 Find the operator which cannot be used with a string in Python from the

following:
(a) + (b) not in (c) * (d) //

8 What will be the output of above Python code?

str1= “6/4”

print(“str1”)

a) 1 b) 6/4 c) str1 d (1.5)

9 Which of the following will result in an error?

str1="python"

a) print(str1[2]) b) str1[1]="x"
b) c) print(str1[0:9]) d) Both (b) and (c)

10 Which of the following is False?

a) String is immutable.

b) capitalize() function in string is used to return a string by converting the

whole given string into uppercase.

c) lower() function in string is used to return a string by converting the whole

given string into lowercase.
d) None of these.

11 What will be the output of below Python code?

str1="Information"

print(str1[2:8])

62

 a) formatb) formation c) orma d) ormat

12 What will be the output of below Python code?

str1="Aplication"

str2=str1.replace('a','A')

print(str2)
a) application b) Application c) ApplicAtion d) applicAtion

13 What will be the output of below Python code?

str1=”power”

str1.upper()

print(str1)
a) POWER b) Power c) power d) power

b)

14 Which of the following will give "Simon" as output?

If str1="John,Simon,Aryan"

a) print(str1[-7:-12]) b) print(str1[-11:-7])

c) print(str1[-11:-6]) d) print(str1[-7:-11])

 In the following questions(15 to 20) , a statement of assertion (A) is

followed by a statement of reason(R) . Make the correct choice as :

(a) Both A and R are true and R is the correct explanation for A

(b) Both A and R are true and R is not the correct explanation for A

(c) A is True but R is False (or partially True)

(d) A is false(or partially True) but R is True

15 Assertion(A): The position and index of string characters are different.

Reason(R) : The positions for string’s characters vary from 1..n , where n is
size of the string . The indices for string’s characters vary from 0 to n-1.

16 Assertion(A): Operators + and * can work with numbers as well as strings.

Reason(R) : Unlike numbers , for strings , + means concatenation and * means
replication.

17 Assertion(A):String slices and substrings ,both are extracted subparts of a

string.
Reason(R) : String slices and substrings mean the same.

18 Assertion(A):Like numbers, ==,>,< can also compare two strings.

Reason(R) :comparison of python strings takes place in dictionary order by

applying character-by-character comparison rules for ASCII/Unicode.

19 Assertion(A):String slices and substrings, despite being subparts of a string , are

not the same.

Reason(R) :While the substring contains a continuous subparts of the string ,

the slices may or may not contain continuous subparts of a string.

20 Assertion(A): The individual characters of a string are randomly stored in

memory.

Reason(R) :Python strings are stored in memory by storing individual

characters in contiguous memory locations.

63

ANSWER (1 MARK- MULTIPLE CHOICE QUESTIONS (MCQ)

1 c 11 a

2 a 12 c

3 c 13 a

4 c 14 c

5 b 15 a

6 c 16 a

7 d 17 c

8 c 18 b

9 b 19 a

10 b 20 d

VeryShortanswerTypeQuestions

Q1.Which of the following is not a Python legal string operation?

a) ‟abc‟+‟abc‟ (b)„abc‟*3

b) (c)‟abc‟+3 (d)‟abc‟.lower()Ans:

Ans. (c)‗abc‘+3

Q2. Out of the following operators ,which one scan be used with strings?

=,-,*,/,//,%,>,<>,in, not in,<=

Ans: /,// and %

Q3. From the string S=“CARPEDIEM”.Which ranges return“DIE”and“CAR”?

Ans. S[6:9]forDIEandS[0:3]for CAR

Q4. Given a string S = “CARPE DIEM”. If n is length/2 then what would following return?
(a)S[:n] (b)S[n:] (c)S[n:n] (d)S[1:n] (e)S[n:length-1]
Ans: (a)“CARPE(b)“DIEM” (c)“ “ (d)“ARPE” (e)“DIE”

Q5.Whatwouldfollowingexpressionreturn?

(a) ”HelloWorld”.upper().lower() (b)”HelloWorld”.lower().upper()

(c)”HelloWorld”.find(“Wor”,1,6) (d)”HelloWorld”.find(“Wor”)

(e)”HelloWorld”.find(“wor”) (f)”HelloWorld”.isalpha()

(g) ”HelloWorld”.isalnum() (h)”HelloWorld”.isdigit()

(i)“123FGH”.isdigit()

Ans: (a) 'helloworld' (b)'HELLOWORLD'

(c)-1 (d)6

(e)-1 (f)False

(g) False (h)False

(i)False

Q-6. Find the output:

str="PYTHON@LANGUAGE"

print(str[2:12:2])

Ans. TO@AG

64

Q-7. Find and write the output of the following python code:

x = "abcdef"

i = "a"

while i in x:

print(i, end = " ")

Ans: aaaaaa ---- OR infinite loop

ShortAnswerTypeQuestions

Q1.What is a string slice?How is it useful?

Ans: String Slice is a part of a string containing some contiguous characters from the string.

It is accessed from the string by providing a rangein“[]”bracketsi.e.S[n:m].Python returns all the characters at

indices n,n+1, n+2. . n-1e.g.

S=”Barabanki”

S[4:7]will return ban

Q2.Write a python script that traverses through an input string and prints its characters in different lines–two

characters per line.

Ans:

Q3.Which functions would you chose to use to remove leading and trailing white spaces from a given string?

Ans: Python String strip() function will remove leading and trailing white spaces.If you want to remove

only leading or trailing spaces,use lstrip()or rstrip()function instead.

Q4.Suggest appropriate functions for the following tasks –

(a) To check whether the string contains digits.

(b) To find the occurrence a string within another string.

(c) Toconvertthefirstletterofastringtouppercase.

(d) To convert all the letters of a string toupper case.

(e) To check whether all the letters of the string are in capital letters.

(f) to remove all the white spaces from the beginning of a string.

Ans:(a) isalnum()

(b) find()

(c) capitalize()

(d) upper()

(f) isupper()

(g) lstrip()

https://www.journaldev.com/23625/python-trim-string-rstrip-lstrip-strip

65

Q5. Find the errors-
s=”PURAVIDA”
print(s[9]+s[9:15])

Ans: Here the error is:String index out of range.

Q6- How many types of strings are supported in Python?

Ans: Python allows two string types:

Single Line strings –Strings that are terminated in a single line enclosed within single and double quotes.

Multiline strings- String storing multiple lines of text enclosed within three single or double quotes.

HOTs Questions

Q.1 WAP to print following pattern without using any nested loop.

Ans:

Q2. WAP to print the number of occurrences of a substring into a line.

Ans.

Q3. WAP to check the given string ispalindrome or not.

Ans.

66

Unsolved Questions:

Q1.Find output of the following “abcd”.startswith(“cd”).

Q2. Find output of the following “COMPUTER SCIENCE”.title().

Q3. Differentiate between partition () and split() functions.

Q4. Find the length of string: name= “Computer Science”).

Q5. Find the output:

Q6. . Find and write the output of the following python code:

Text1="DIGITAL INDIA2023"

Text2=""

I=0

while I<len(Text1):

if Text1[I]>="0" and Text1[I]<="9":

Val = int(Text1[I])

Val = Val + 1

Text2=Text2 + str(Val)

elif Text1[I]>="A" and Text1[I] <="Z":

Text2=Text2 + (Text1[I+1])

else:

Text2=Text2 + "*"

I=I+1

print (Text2)

Q7. Find and write the output of the following python code:

s="welcome2cs"

n = len(s)

m=""

for i in range(0, n):

if (s[i] >= 'a' and s[i] <= 'm'):

m = m +s[i].upper()

elif (s[i] >= 'n' and s[i] <= 'z'):

m = m +s[i-1]

elif (s[i].isupper()):

m = m + s[i].lower()

else:

m = m +'&'

print(m)

67

Answers:

Q1. False

Q2. Computer Sceince

Q3. The split() method is used to split a string into a list of substrings based on a delimiter. The delimiter

can be any character or sequence of characters that you specify. By default, if no delimiter is provided, it

will split the string at spaces.

The partition() method is used to split a string into three parts based on the first occurrence of a specified

delimiter. It returns a tuple containing the part before the delimiter, the delimiter itself, and the part after the

delimiter.
Q4. 16

Q5. Python

Output

based

Questions

Q6. IGITAL *NDIA23134

Q7. sELCcME&Cc

LIST MANIPULATION

List: A list is a collection of comma-separated values (items) of same or different type within square ()

brackets. List is a mutable data type.

Slicing: Slicing is an operation in which we can slice a particular range from a sequence.

List slices are the sub parts extracted from a list.

Nested List: When a list appears as elements of another list, it is called a nested list.

Built-in Function (Manipulating Lists)

Function Syntax Description

list() list(sequence) It returns a list created from the passed

arguments, which should be a sequence

type(string, list, tuple etc.). if no argument is

passed, it will create an empty list.
append() list.append (items) It adds a single item to the end of the list.

extend() list1.extend (list2) It adds one list at the end of another list.

insert() list.insert (index_no, value) It adds an element at a specified index

reverse() list.reverse () It reverses the order of the elements in a list.

index() list.index (item) It returns the index of first matched item from

the list.

len() len (list) Returns the length of the list i.e. number of

elements in a list

sort() list.sort () This function sorts the items of the list.

clear() list.clear () It removes all the elements from the list.

count() list.count (element) It counts how many times an element has

occurred in a list and returns it.
sorted() sorted(sequence,reverse=False) It returns a newly created sorted list; it does not

68

 change the passed sequence.

pop() list.pop (index) It removes the element from the specified index

and also returns the element which was
removed.

remove() list.remove (value) It is used when we know the element to be
deleted, not the index of the element.

max() max(list) Returns the element with the maximum value
from the list.

min() min(list) Returns the element with the minimum value
from the list

sum() sum(list) It returns sum of elements of the list.

MCQs

1 1. The data type list is an ordered sequence which is and made

up of one or more elements.

a. Mutable

b. Immutable

c. Both a) and b)

d. None of the above

2 Which statement from the list below will be create a new list?

a. new_l = [1, 2, 3, 4]

b. new_l = list()

c. Both a) and b)
d. None of the above

3 What will be the output of the following python code

new_list = [‘P’,’y’,’t’,’h’,’o’,’n’]

print(len(new_list))
a. 6 b. 7c. 8d. 9

4 Python allows us to replicate a list using repetition operator depicted by

symbol .
a. – b. + c. / d. *

5 We can access each element of the list or traverse a list using a .

a. for loop b. while loop
c. Both a) and b) d. None of the above

6 a single element passed as an argument at the end of the list.

a. append() b. extend()
c. insert() d. None of the above

7 returns index of the first occurrence of the element in the list. If

the element is not present, ValueError is generated.

a. insert() b. index()
c. count() d. None of the above

8 function returns the element whose index is passed as parameter

to this function and also removes it from the list.

a. push() b. remove()
c. pop() d. None of the above

69

9 What will be the output of the following python code.

new_list = “1234”

print(list(new_list))

a. [‘1’, ‘2’, ‘3’, ‘4’] b. (‘1’, ‘2’, ‘3’, ‘4’)
c. {‘1’, ‘2’, ‘3’, ‘4’} d. None of the above

10 Suppose list1 is [4, 2, 2, 4, 5, 2, 1, 0], which of the following is correct syntax

for slicing operation?

a) print(list1[0]) b) print(list1[:2])
c) print(list1[:-2]) d) all of the mentioned

11 Suppose list1 is [2, 33, 222, 14, 25], What is list1[-1] ?
a) Error b) None c) 25 d) 2

12 Suppose list1 is [1, 3, 2], What is list1 * 2 ?

a) [2, 6, 4] b) [1, 3, 2, 1, 3]
c) [1, 3, 2, 1, 3, 2] d) [1, 3, 2, 3, 2, 1].

13 What is the output when following code is executed ?

>>>list1 = [11, 2, 23]

>>>list2 = [11, 2, 2]

>>>list1 < list2 is
a) True b) False c) Error d) None

14 To insert 5 to the third position in list1, we use which command ?

a) list1.insert(3, 5) b) list1.insert(2, 5)
c) list1.add(3, 5) d) list1.append(3, 5)

 In the following questions(15 to 20) , a statement of assertion (A) is

followed by a statement of reason(R) . Make the correct choice as :

(a) Both A and R are true and R is the correct explanation for A

(b) Both A and R are true and R is not the correct explanation for A

(c) A is True but R is False (or partially True)
(d) A is false(or partially True) but R is True

15 Assertion: In python, unlike other types, you can change elements of a list in

place.
Reason: Lists are mutable sequences.

16 Assertion: Any comma-separated group of values creates a list.

Reason: Only a group of comma-separated values or expressions enclosed in []
, creates a list.

17 Assertion: Lists and strings have similar types of indexing.

Reason: Both lists and strings have two-way indexing , forward indexing and

backward indexing.

18 Assertion :Lists are similar to strings in a number of ways like indexing , slicing

and accessing individual elements.
Reason : Lists, unlike strings , are mutable.

19 Assertion : The membership operators in and not in work in the same way on

lists as they do , with strings.
Reason :Some operators work differently on strings and lists , such as + and * .

20 Assertion: A list slice is an extracted part of a list.
Reason: A list slice is a list in itself.

70

1 a 11 c

2 c 12 c

3 a 13 b

4 d 14 b

5 c 15 a

6 c 16 d

7 b 17 a

8 c 18 b

9 a 19 c

10 d 20 b

Very Short Answer Type Questions

Q1. What do you understand by mutability?

Ans: Mutable means changeable. In Python, mutabletypes are those whose values can be changed

inplace.Onlythreetypesaremutablein python–Lists,Dictionariesand Sets.

Q2. Startwiththelist[8,9,10].Dothefollowingusinglistfunctions:

(a) Setthesecondentry(index1)to17

(b) Add4,5and6tothe endofthelist.

(c) Removethefirstentryfromthelist.

(d) Sortthelist

(e) Doublethelist.

(f) Insert 25 at index 3

Answers:

(a) list[1]=17

(b) list.append(4)

list.append(5)

list.append(6)

(c) list.pop(0)

(d) list.sort()

(e) list=list*2

(f) list.insert(3,25)

Q3. Ifais[1,2,3],what is the difference(ifany) between a*3 and [a,a,a]?

Ans: a*3 will produce [1,2,3,1,2,3,1,2,3],means a list of integers and [a,a,a] will produce[[1,2,3],[1,2,3],

[1,2,3]], means list of lists

Q4. If a is [1,2,3],is a*3 equivalent to a+ a+a?

Ans: Yes, Both a*3and a+a+a will produce same result.

71

Q5. If ai s[1,2,3],what is the meaning of a[1:1]=9?

Ans: This will generate an error―Type Error: can only assign an iterable.

Q6. If a is[1,2, 3],what is the meaning of a[1:2]=4 and a[1:1]=4?

JjAns: These will generate an error―Type Error:can only assign an iterable .

Q7. What are list slices?

Ans: List slices are the sub-part of a list extracted out. You can use indexes of the list elements to create list

slices as per following format. Syntax is as follows:- Seq=ListName [start:stop]

Q8.Does a slice operatoral ways produce a newlist?

Ans: Yes, this will create a new list.

ShortAnswerTypeQuestions

Q1. How are lists different from strings when both are sequences?

Ans: Lists are similar to strings in many ways like indexing, slicing, and accessing individual elements but

they are different in the sense that Lists are mutable while strings are immutable.

Inconsecutive locations, strings store the individual characters while list stores the references of its elements.

Strings store single type of elements-all characters while lists can store elements belonging to different types.

Q2. What are nested Lists?

Ans: A list can have an element in it,which itself is a list.Such a list is called nested list.e.g.

L=[1,2,3,4,[5,6,7],8]

Q3.Discuss the utility and significance of Lists.

Ans: The list is a most versatile datatype available in Python which can be written as a list of

comma-separated values(items) between square brackets. Important thing about a list is that items in a

list need not be of the same type. List is majorly used with dictionaries when there is large number of data.

Q4. What is the purpose of the del operator and pop method? Try deleting a slice.

Ans: del operator is used to remove an individual item,or to remove all items identified by a slice.

It is to be used as per syntax given below–

>>>del List[index]

>>>del List[start:stop]

Pop method is used to remove single element, not list slices.The pop() method removes an

individual

item and returns it.I ts syntax is–

>>>a=List.pop() #thiswill remove last item and deleted item will be assigned to a.

>>>a=List[10] #thiswill remove the item at index10 and deleted item will be assigned to a.

Q5. What are list slices?

Ans: List slices,like string slices are the sub part of a list extracted out. Indexes can be used to create list

slices as per following format:

seq=L[start:stop]

Q6. What do you understand by true copy of a list? How is it different from shallow copy?

Ans:A shallow copy means constructing a new collection object and then populating it with references to the

child objects found in the original. In essence, a shallow copy is only one leveldeep. The copying process does

not recurse and therefore won‘t create copies of the child objects themselves.

72

True Copy means you can create a copy of a list using New_list=My_list. The assignment just copies the

reference to the list, not the actual list, so both new_list and my_list refer to thesamelistaftertheassignment.

Q7. Predict the output – Ans:

Q8. Predict the output – Ans:

UNSOLVED QUESTIONS

Q1. WAP to find minimum element from a list of elements along with its index in the list.

Q2.WAP to Calculate mean of the given list of numbers.

Q3. WAP to search for an element in a given list of numbers.

Q4. WAP to count the frequency of a given element in the list of numbers.

Q5. Differentiate between append() and extend () functions in Python.

UNSOLVED QUESTIONS(ANSWERS)

Q1. WAP to find minimum element from a list of elements along with its index in the list.

Ans. lst = eval(input(“enter list :”))

min_element = lst[0]

min_index = 0

for i in range(1, len(lst)):

if lst[i] <min_element:

min_element = lst[i]

min_index = i

print(“Given list is : “,lst)

print(“The minimum element of the given list is :”)

print(min_element,”at index”,min_index)

Q2.WAP to Calculate mean of the given list of numbers.

Ans.numbers = [23, 45, 12, 67, 9, 31]

Calculate the sum of the numbers

total = 0

for num in numbers:

total += num

Calculate the mean

mean = total / len(numbers)

print(“The mean of the numbers is :”,mean)

73

Q3. WAP to search for an element in a given list of numbers.

Ans.lst=eval(input(“Enter list:”))

length=len(lst)

element=int(input(“Enter element to be searched for:”))

for i in range(0,length):

if element==lst[i]:

print(element,”found at index”,i)

else:
break

print(element,”not found in given list”)

Q4. WAP to count the frequency of a given element in the list of numbers.

Ans . L=[2,58,95,999,65,32,15,1,7,45]

n=int(input("Enter the number : "))

print("The frequency of number ",n," is ",L.count(n))

Q5. Differentiate between append() and extend() functions.

Ans. The append() function/method adds a single item to the end of the existing list. It doesn’t return a

new list. Rather, it modifies the original list. The extend() adds all multiple items in the form of a list at the

end of another list.

TUPLES

A tuple is a collection which is ordered and immutable (We cannot change elements of a tuple in place).
Tuples are written with round brackets. Tuples are used to store multiple items in a single variable. Tuples
may have items with same value.

Exp. T = () # Empty Tuple
T = (1, 2, 3) # Tuple of integers
T = (1,3.4,7) # Tuple of numbers
T = (‘a’, ‘b’, ‘c’) # Tuple of characters
T = (‘A’,4.5,’Ram’,45) # Tuple of mixed values
T = (‘Amit’, ‘Ram’, ‘Shyam’) # Tuple of strings

Creating Tuples

A tuple is created by placing all the items (elements) inside parentheses (), separated by commas.
Exp. T = (10,20, ‘Computer’,30.5)

If there is only a single element in a tuple then the element should be followed by a comma, otherwise it will
be treated as integer instead of tuple. For example

T = (10) # Here (10) is treated as integer value, not a tuple
T1 = (10,) # It will create a tuple

74

Difference between List and Tuple

List Tuple

Elements are enclosed in square brackets i.e. [] Elements are enclosed in parenthesis i.e. ()

It is mutable data type It is immutable data type

Iterating through a list is slower as compared to tuple Iterating through a tuple is faster as compared
to list

Accessing Elements of a tuple (Indexing)

Elements of a tuple can be accessed in the same way as a list or string using indexing and slicing, for example
If str = (‘C’, ‘O’, ‘M’, ‘P’, ‘U’, ‘T’, ‘E’, ‘R’)

>>> str[2] = ‘M’

>>> str[-3] = ‘T’

Traversing a Tuple
Traversing a tuple means accessing and processing each element of it. The for loop makes it easy to

traverse or loop over the items in a tuple. For example:

str = (‘C’, ‘O’, ‘M’, ‘P’, ‘U’, ‘T’, ‘E’, ‘R’)
for x in str:

print(str[x])
The above loop will produce result as :

C
O
M
P
U
T
E
R

Tuple Operations
Concatenation (Joining Tuples)

The + operator is used to join (Concatenate) two tuples
Exp.
>>> T1 = (10,20,30)
>>> T2 = (11,22,33)
>>> T1 + T2
+ Operator concatenates Tuple T1 and Tuple T2 and creates a new Tuple
(10, 20, 30, 11, 22, 33)

75

Repetition
* Operator is used to replicate a tuple specified number of times, e.g.
>>> T = (10, 20, 30)
>>> T * 2
(10, 20, 30, 10, 20, 30)

Membership:
The ‘in’ operator checks the presence of element in tuple. If the element present it returns True, else it
returns False.

For Exp. str = (‘C’, ‘O’, ‘M’, ‘P’, ‘U’, ‘T’, ‘E’, ‘R’)
‘M’ in str => Returns True
‘S’ in str => Returns False

The not in operator returns True if the element is not present in the tuple, else it returns False.
‘M’ not in str => Returns False
‘S’ not in str => Returns True

Slicing
It is used to extract one or more elements from the tuple. Slicing can be used with tuples as it is used in
Strings and List. Following format is used for slicing:

S1 = T[start : stop : step]
The above statement will create a tuple slice namely S1 having elements of Tuple T on indexes start,

start+step, start+step+step, …, stop-1.
By default value of start is 0, value of stop is length of the tuple and step is 1

For Example:
>>> T = (10,20,30,40,50,60,70,80,90)
>>> T[2:7:3]
(30, 60)

>>> T[2:5]
(30, 40, 50)

>>> T[::3]
(10, 40, 70)

T[5::]
(60, 70, 80, 90)

Built-in functions/methods:
The len() function

This method returns length of the tuple or the number of elements in the tuple, i.e.,
>>> T = (10,20,30,40,50,60,70,80,90)
>>> len(T)
9

76

The max() function
This method returns element having maximum value, i.e.,

>>> T = (10,20,30,40,50,600,70,80,90)
>>>max(T)
600

>>> T = ('pankaj','pinki','parul')
>>> max(T)
'pinki'

The min() function
This method returns element having minimum value, i.e.,

>>> T = (10,20,30,40,50,600,70,80,90)
>>>min(T)
10

>>> T = ('pankaj','pinki','parul')
>>> min(T)
'pankaj'

The sum() function
This method is used to find the sum of elements of the tuple, i.e.,

>>> T = (10,20,30,40,50,600,70,80,90)
>>> sum(T)
990

The index() method
It returns the index of an existing element of a tuple., i.e.,

>>> T = (10,20,30,40,50,600,70,80,90)
>>> T.index(50)
4

But if the given item does not exist in tuple, it raises ValueError exception.
>>> T = (10,20,30,40,50,600,70,80,90)
>>> T.index(55)
ValueError: tuple.index(x): x not in tuple

The count() method
This method returns the count of a member / element (Number of occurrences) in a given tuple.,

i.e.,
>>> T = (10,20,30,20,20,0,70,30,20)
>>> T.count(20)
4

>>> T = (10,20,30,20,20,0,70,30,20)
>>> T.count(30)
2

77

The tuple() method
This function creates an empty tuple or creates a tuple if a sequence is passed as argument.

>>> L = [10, 20, 30] # List
>>> T = tuple(L) # Creates a tuple from the list
>>> print(T)
(10, 20, 30)

>>> str = "Computer" # String
>>> T = tuple(str) # Creates a tuple from the string
>>> print(T)
('C', 'o', 'm', 'p', 'u', 't', 'e', 'r')

The sorted() method
This function takes the name of the tuple as an argument and returns a new sorted list with sorted

elements in it.

>>> T = (10,40,30,78,65,98,23)
>>> X = sorted(T) # Make a list of values arranged in ascending order
>>> print(X)
[10, 23, 30, 40, 65, 78, 98]

>>> Y = sorted(T, reverse = False) # Make a list of values arranged in ascending order
>>> print(Y)
[10, 23, 30, 40, 65, 78, 98]

>>> Z = sorted(T, reverse = True) # Make a list of values arranged in descending order
>>> print(Z)
[98, 78, 65, 40, 30, 23, 10]

Tuple Assignment (Unpacking Tuple)

It allows a tuple of variables on the left side of the assignment operator to be assigned respective
values from a tuple on the right side. The number of variables on the left should be same as the number of
elements in the tuple.
Exp.
>>> T = ('A', 100, 20.5)
>>> x,y,z = T
>>> print(x,y,z)
A 100 20.5

Nested Tuple

A tuple containing another tuple in it as a member is called a nested tuple, e.g., the tuple shown below

is a nested tuple:

>>> students = (101,'Punit', (82,67,75,89,90)) # nested tuple
>>> len(students)
3

78

>>> print(students[1]) # 2nd element of tuple
Punit
>>> print(students[2]) # 3rd element of tuple
(82, 67, 75, 89, 90)
>>> print(students[2][3]) # Accessing 4th element of inner tuple
89

Program to find sum of all the elements of a tuple
T = (10, 2, 30, 4, 8, 5, 45)
print(T)
s = sum(T)
print("Sum of elements : ", s)

Output
(10, 2, 30, 4, 8, 5, 45)
Sum of elements : 104

Program to find minimum and maximum values in a tuple
T = (10,2,30,4,8,5,45)
print(T)
minimum = min(T)
maximum = max(T)
print("Minimum Value : ", minimum)
print("Minimum Value : ", maximum)

Output
(10, 2, 30, 4, 8, 5, 45)

Minimum Value : 2
Minimum Value : 45

Program to find mean of values stored in a tuple
T = (10,2,30,4,8,5,46)
print("Tuple :", T)
s = sum(T)
NumberOfElements = len(T)
average = s/NumberOf Elements
print("Mean of elements : ", average)

Output
Tuple : (10, 2, 30, 4, 8, 5, 46)
Mean of elements : 15.0

79

Write a program to find the given value in a tuple

T = (10,2,34,65,23,45,87,54)
print("Tuple :", T)
x = int(input("Enter value to search:"))
for a in T:

if a == x :
print("Value found")
break

else:
print("Value not found")

Output
Tuple : (10, 2, 34, 65, 23, 45, 87, 54)
Enter value to search:45
Value found

Q) Write a program to find sum of elements of tuple without using sum() function?

T = (10,20,30)
sum = 0
for x in T:

sum = sum + x
print(T)
print(sum)

Q) Write a program to find sum of even and odd elements of tuple
T = (10,23,30,65,70)
sumE = 0
sumO = 0
for x in T:
if (x%2 == 0):

sumE = sumE + x
else:

sumO = sumO + x
print(T)
print("sum of Even numbers :",sumE)
print("Sum of Odd Numbers : ", sumO)

80

MCQs

1.

Consider a tuple in python named Months = (‘Jul’, ‘Aug’, ‘Sep’). Identify the
invalid statement(s) from the given below statements:-

a) S = Months[0] b) print(Months[2])
c) Months[1] = ‘Oct’ d) LIST1 =list(Months)

C

2.
Suppose tuple1 = (2, 33, 222, 14, 25), What is tuple1[::-1]?
a) [2, 33, 222, 14] b) Error
c) 25 d) [25, 14, 222, 33, 2]

D

3.

Consider the following declaration of Record, what will be the data type of Record?
Record=(1342, “Pooja” , 45000, “Sales”)
a) List b) Tuple c) String d) Dictionary

B

4.

Which operator is used for replication?
a) + b) % c) * d) //

C

5.
What will be the output of following Python Code? Tp = (5)

Tp1 = tp * 2
Print(len(tp1))

a) 0 b) 2 c) 1 d) Error

D

Q1. Define Tuple?
Ans. A tuple is an ordered sequence of elements of different data types, such as integer, float, string, list or
even a tuple. Elements of a tuple are enclosed in parenthesis (round brackets) and are separated by
commas.

For example T = (1,2, ‘a’, 5) # T is a tuple

Q2) Write a statement to create an empty tuple named T1?
Ans: T1 = () or T1 = tuple()

Q3) Write the code to convert given list L into a tuple?
Ans: T = tuple(L)

Q4) What is the difference between a List and a Tuple?
Ans:

List Tuple

Elements are enclosed in square
brackets i.e. []

Elements are enclosed in
parenthesis i.e. ()

It is mutable data type It is immutable data type

Iterating through a list is slower as
compared to tuple

Iterating through a tuple is faster
as compared to list

Q5) What is unpacking Tuple?
Ans: It allows a tuple of variables on the left side of the assignment operator to be assigned respective values
from a tuple on the right side. The number of variables on the left should be same as the number of
elements in the tuple.

81

Q6) Which error is returned by the following code:
T = (10,20,30,40,50,60,70)
Print(T[20])

Ans: IndexError : tuple index out of range

Q6) What are nested tuples?
Ans: A tuple containing another tuple in it as a member is called a nested tuple, e.g., the tuple shown below is

a nested tuple:

>>> students = (101,'Punit', (82,67,75,89,90)) # nested tuple

Q7) Write a program to create a tuple and find sum of its alternate elements?
Ans:T = (10,23,30,65,70)

sum = 0
for a in T[0:5:2]:

sum = sum + a
print(sum)

Q8) Write a program to count vowels in a tuple?
Ans: T = tuple(input("Enter Name :"))

print(T)
v = 0
for ch in T:

if ch in ['a','e','i','o','u']:
v = v + 1

print("No. of vowels : ",v)

82

Dictionaries
A dictionary is an unordered sequence of key-value pairs.
➢ Key and value in a key-value pair in a dictionary are separated by a colon. Further, the key : value
➢ pairs in a dictionary are separated by commas and are enclosed between curly parentheses.
➢ The keys of the dictionaries are immutable types such as Integers or Strings etc.
➢ Indices in a dictionary can be of any immutable type and are called keys.
➢ Dictionaries are mutable.

Creating Dictionaries
A Dictionary can be created in three different ways:
Empty Dictionary

>>>D = { } # Empty Dictionary
Dictionary using literal notation

>>>D = {“Name” : “Mohan”, “Class” : “XI”, “City” : “Gurdaspur”}
>>>print(D)
{“Name” : “Mohan”, “Class” : “XI”, “City” : “Gurdaspur”}
>>>print(D[“City”])
“Gurdaspur”

Dictionary using dict() function
Dict() function is used to create a new dictionary with no items. For example,
>>> Months = dict() # Creates an empty dictionary
>>>print(Month) # Prints an empty dictionary
We can use Square Brackets([] with keys for accessing and initializing dictionary values. For Example:
>>> Months[0] = ‘January’
>>> Months[1] = ‘February’
>>>Months[2] = ‘March’
>>> print(Months)
{0 : ’January’, 1: ’February’ , 2 : ’March’}

>>> Months = dict(Jan = 31, Feb = 28, March = 31) # Creating dictionary by giving values in dict()
function

>>> print(Months)
{‘Jan’ : 31, ‘Feb’ : 28, ‘March’ : 31}

Accessing Elements of a Dictionary
Elements of Dictionary may be accessed by writing the Dictionary name and key within square

brackets ([]) as given below:
>>> D = {0 : “Sunday”, 1 : “Monday”, 2: “Tuesday”}
>>> print(D[1])
Monday

Attempting to access a key that does not exist, causes an error. Consider the following statement

that is trying to access a non – existent key (7) from dictionary D. it raises KeyError.
>>> D[7]
KeyError : 7

83

Traversing a Dictionary
Dictionary items can be accessed using a for loop.
for x in D:

print(D [x])

Output
Sunday
Monday
Tuesday

Mutability of Dictionary
Dictionary like lists are mutable, it means dictionary can be changed, new items can be added and

existing items can be updated.

Adding an Element in Dictionary
We can add new element (key : value pair) to a dictionary using assignment, but the key being added

must not exist in dictionary and must be unique.
>>> D[4] = “Wednesday” # if a new key is given, new item is added
>>> print(D)
{0 : “Sunday”, 1 : “Monday”, 2: “Tuesday”, 3: “Wednesday”}

Updating / Modifying an element in Dictionary

We can change the individual element of dictionary as given below:
>>> D[1] = “Mon” # Value of Key (1) is changed
>>> print(D)
{0 : “Sunday”, 1 : “Mon”, 2: “Tuesday”, 3: “Wednesday”}

Dictionary Functions and Methods
Built –in functions and methods are provided by Python to manipulate Python dictionaries.

len() function:
It is used to find the length of the dictionary, i.e., the count of the key : value pair.

Exp.
D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
length = len(D)
print("Length of Dictionary : ", length)

Output
Length of Dictionary : 4

dict() function:
The dict() function creates a dictionary.

Exp.
By giving Key:value pair in the form of separate sequence:

84

Accessing Items, Keys and Values – get(), items(), keys(), values () methods
get() Method : it returns value of the given key
>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> value = D.get('Rama', 'Key not Found')
>>> print("Age of Rama is : ", value)

>>> value = D.get('Mohit', 'Key not Found') # if key is not in the dictionary, it shows key not found
>>> print("Age of Mohit is : ", value)

Output
Age of Rama is : 22
Age of Mohit is : Key not Found

items() Method :
It returns all items of a dictionary in the form of list of tuple of (key:value)
>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> print(D.items())

Output
dict_items([('Ram', 20), ('Mohan', 30), ('Rama', 22), ('Rashi', 32)])

keys() Method :
It returns list of all the keys of the dictionary.
>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> print(D.keys())

Output
dict_keys(['Ram', 'Mohan', 'Rama', 'Rashi'])

values() Method :
It returns list of all the values of the dictionary.
>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> print(D.values())

85

Output
dict_values([20, 30, 22, 32])

update() Method :
This function merges key : value pairs from the new dictionary into the original dictionary, adding or

replacing

as needed. The items in the new dictionary are added to the old one and override any items already there with

the same keys.

>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> D2 = {'A' : 20, 'Mohan' : 60, 'Rama' : 62, 'B' : 32}

>>> D.update(D2)

>>> print("D => ",D)

>>> print("D2 => ", D2)

Output
D => {'Ram': 20, 'Mohan': 60, 'Rama': 62, 'Rashi': 32, 'A': 20, 'B': 32}

D2 => {'A': 20, 'Mohan': 60, 'Rama': 62, 'B': 32}

Deleting elements from dictionary:
del statement

del statement is used to delete a dictionary element or dictionary entry, i.e., a key:value pair.
>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> print(D)
>>> del D["Mohan"] # to delete a key from the dictionary i.e. “Mohan”
>>> print(D)
>>> del D # To delete the whole dictionary
Output

{'Ram': 20, 'Mohan': 30, 'Rama': 22, 'Rashi': 32} # Complete Dictionary
{'Ram': 20, 'Rama': 22, 'Rashi': 32} # After deleting “Mohan”

clear () method
It empties the dictionary.

>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> print(D)
>>> D.clear()
>>> print("Dictionary after Clear : ", D)

Output
{'Ram': 20, 'Mohan': 30, 'Rama': 22, 'Rashi': 32}

Dictionary after Clear : {}

pop () method
It removes and returns the dictionary element associated to passed key.

>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}

86

>>> print("Removed Item : ", D.pop("Rama"))

Output
Removed Item : 22

popitem () method
It removes and returns the last dictionary element.

>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> print("Removed Item : ", D.popitem())

Output
Removed Item : ('Rashi', 32)

sorted () method
It returns a sorted list of the dictionary keys. It is used as below:

>>> D = {'Ram' : 20, 'Mohan' : 30, 'Rama' : 22, 'Rashi' : 32}
>>> print(sorted(D)) # sort the keys in ascending order
>>> print(sorted(D), reverse = False) # sort the keys in ascending order
>>> print(sorted(D), reverse = True) # sort the keys in descending order

Output
['Mohan', 'Ram', 'Rama', 'Rashi']

['Mohan', 'Ram', 'Rama', 'Rashi']

['Rashi', 'Rama', 'Ram', 'Mohan']

max () , min() and sum() Functions
These functions work with the keys of a dictionary. Dictionaries must be homogeneous to use the

functions.

• max() function gives the maximum value

• min() function gives the minimum value

• sum() function gives the sum of keys
>>> D = {1: "Monday", 2: "Tuesday", 3:"Wednesday"}
>>> print("Max = ",max(D))
>>> print("min = ",min(D))
>>> print("Sum = ", sum(D))

Output
Max = 3

min = 1

Sum = 6

fromkeys () method
This method is used to create a new dictionary from a sequence containing all the keys and common

value, which will be assigned to all the keys. Keys argument must be an interable sequence (First argument).
When value not given, it will take None as the values for the keys (Second Argument)

Exp.

87

>>> D = dict.fromkeys([2,4,5,8],200) # When Value given
>>> print(D)
>>> D = dict.fromkeys([2,4,5,8]) # When value not given, it will take None as the values for the keys
print(D)

Output
{2: 200, 4: 200, 5: 200, 8: 200}

{2: None, 4: None, 5: None, 8: None}

setdefault () method
This method inserts a new key: value pair only if the key does not exist. If the key already exists, it

returns the current value of the key.
Exp.
>>> D = {1: "Monday", 2: "Tuesday", 3:"Wednesday"}
>>> D.setdefault(2,"Tuesday") # Key already exists, it will not insert
>>> print(D)
>>> D.setdefault(4,"Thursday") # New Key, it will be inserted
>>> print(D)

Output
{1: 'Monday', 2: 'Tuesday', 3: 'Wednesday'}

{1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday'}

Q) Write a program to count number of words in a string?
str = "This is a book , book is very good"
D = {}
w = str.split()
for x in w:

key = x
if key not in D:

count = w.count(key)
D[key] = count

print("Count Frequencies...")
print(D)

Output:
Count Frequencies...
{'This': 1, 'is': 2, 'a': 1, 'book': 2, ',': 1, 'very': 1, 'good': 1}

Q) Write a program to count number of characters in a string?
str = "This is a book , book is very good"
D = {}
for x in str:

if x not in D:
count = str.count(x)
D[x] = count

print("Count Frequencies...")

88

print(D)
Output:
Count Frequencies...
{'T': 1, 'h': 1, 'i': 3, 's': 3, ' ': 8, 'a': 1, 'b': 2, 'o': 6, 'k': 2, ',': 1, 'v': 1, 'e': 1, 'r': 1, 'y': 1, 'g': 1, 'd': 1}

MCQs

Question – Answers
Q1) What is a dictionary?
Ans: A dictionary is an unordered sequence of key-value pairs.
➢ Key and value in a key-value pair in a dictionary are separated by a colon. Further, the key : value
➢ pairs in a dictionary are separated by commas and are enclosed between curly parentheses.
➢ The keys of the dictionaries are immutable types such as Integers or Strings etc.
➢ Indices in a dictionary can be of any immutable type and are called keys.
➢ Dictionaries are mutable.

Q2) What is the use of from keys () method?
Ans: This method is used to create a new dictionary from a sequence containing all the keys and common
value, which will be assigned to all the keys. Keys argument must be an interable sequence (First argument).
When value not given, it will take None as the values for the keys (Second Argument)

Q3) What do you understand by Mutability of Dictionary?
Ans: Dictionary is mutable, it means dictionary can be changed, new items can be added and existing items
can be updated.

1 Dictionaries are set of elements.
(a) sorted (b) Ordered (c) unordered (d) random

C

2 Which of the following will create a dictionary with given keys and a common value?
(a) fromkeys() (b) update () (c) setdefault() (d) all of the above

A

3 What will be printed by the following statements?
D1 = {“cat”:12,”dog”:6,”elephant”:23,”bear”:20}
Print(25 in D1)
(a) True (b) False (c) Error (d) None

B

4 What would the following code print?
D = {‘spring’ : ‘autumn’, ‘autumn’: ’fall’, ‘fall’ : ‘spring’}
Print(d[‘autumn’])
(a) autumn (b) fall (c) spring (d) Error

B

5 What will be the output of following Python code?
d1 = {“a” : 10, “b” : 2, “c”:3}
str1 = “ ”
for i in d1:

str1 = str1 + str(d1[i]) + “ “
str2 = str1[:-1]

print(str2[::-1])
(a) 3, 2 (b) 3,2,10 (c) 3,2,01 (d) Error

C

89

Q4) Why a list cannot be used as keys of dictionaries?
Ans: Lists cannot be used as keys in a dictionary because they are mutable and a Python dictionary can have
only keys of immutable types.

Q5) If the addition of new key : value pair causes the size of the dictionary to grow beyond its original size,
an error occurs, True or False?
Ans: False, There cannot occur an error because dictionaries being the mutable types, they can grow or
shrink
on and as needed basis.

Q6) Write the output of following code:
x = {1:10, 2:20, 3:30}
x[4] = 20
print(x)

Ans:
{1: 10, 2: 20, 3: 30, 4: 20}

Q7) Write the output of following code:
d = {'x': 1, 'y': 2, 'z': 3}
for k in d:

print (k, '=', d[k])
Ans:

x = 1
y = 2
z = 3

Q8) Write the output of following code:
x = {1:10}
d = {2:20, 3:30, 4:40}
x.update(d)
print(x)

Ans:
{1: 10, 2: 20, 3: 30, 4: 40}

90

Python Modules

Python Modules:

Modules are the files in python used for grouping similar codes, to get an easy access to those codes.

Python Modules facilitates reusability and easy categorization of codes.

Python Built In Modules:

Python facilitates its users a variety of modules already defined in Python library that makes Python a easy

to use programming language. Some of these modules are:

Importing a Python Module:
Python modules can be imported in three ways, using:

Python import statement:
To use the functionality present in any module, you have to import it into your current program. You need to
use the import keyword along with the desired module name.
Python “import” statement is used to import a Python module. For Example

import math

Python from.. import statement:
Python also facilitates to import a specific attribute from a Python module. This can be done using Python
“from..import” statement. For example

from math import sqrt # It will import only sqrt method from math module

Python from.. import* statement:
Python “from..import*” statement is used to import a complete Python module. For Example

from math import * # it imports entire module
Python Math Module:

Python math module contains different built in mathematical functions and mathematical constants.

Math Functions:

FUNCTION USES Example

ceil () The ceil() function returns the smallest integer not
less than num

math.ceil(1.03) gives 2.0
math.ceil(-1.03) gives -1.0

floor() The floor() function returns the largest integer not
greater than num

math.floor(1.03) gives 1.0
math.floor(-1.03) gives -2.0

sqrt() The sqrt() function returns the square root of num. If
num < 0 , domain error occurs.

math.sqrt(81.0) gives 9.0

pow() The pow() function returns the base raised to exp
power

math.pow(5.0,0) gives 1
math.pow(3.0,4) gives 81

fabs() The fabs() returns the absolute value of num math.fabs(2.0) gives 2.0
math.fabs(-2.0) gives 2.0

91

sin() The sin() function returns the sine of arg. The value
of arg must be in radians.

math.sin(val)
(val is a number)

cos() The cos() function returns the cosine of arg. The
value of arg must be in radians.

math.cos(val)
(val is a number)

tan() The tan() function returns the tangent of arg. The
value of arg must be in radians.

math.tan(val)
(val is a number)

The math module of Python also makes available two useful constants namely pi and e. Which we can use as
math.pi gives the mathematical constant π = 3.141592…, to available precision.

math.e gives the mathematical constant e = 2.718281…, to available precision.

Random Module

Function Uses Example

random() Used to generate a random floating – point number

between 0.0 to 1.0 that is, including zero but excluding

one.

Import random()

print(random.random())

0.022353

randint() randint(start, stop) is used to generate a random

number between start and stop where both the

numbers are inclusive.

random.randint(10,15)

it may generate any one of the

values given below

10,11,12,13,14,15

randrange() • random.randrange(<stopvalue>) is used to

generate a random number in the range 0 to

<stopvalue>

• random.randrange(start,stop) is used to

generate a random number in the range start to

stop

• random.randrange(start,stop,step) is used to

generate a random number in the range start to

stop, but here, the difference between two such

generated random numbers will be a multiple of

step value.

• random.randrange(35)

It will generate a random

number from 0 to 35

• random.randrange(11,45)

It will generate a random

number in the range 11 ..

45

• random.randrange(11,45,

4)

it may generate any one

of the values given

below11,15,19,23,27,31,3

5,39,43

92

Statistics Module

mean() This method calculates the mean (average) of the given data
set. It add up all the given values, then divide by number of
values in the set.

import statistics
seq =
[5,6,7,5,6,5,5,9,11,12,23,5]
statistics.mean(seq)
it gives 8.25

median() This method calculates the median (middle value) of the
given data set.

import statistics
seq =
[5,6,7,5,6,5,5,9,11,12,23,5]
statistics.median(seq)
it gives 6.0

mode() This method determines the central tendency of numerical
or nominal data. It is used to find the most frequent number
in a sequence.

import statistics
seq =
[5,6,7,5,6,5,5,9,11,12,23,5]
statistics.mode(seq)
it gives 5

MCQs

1. To include the use of functions which are present in the random library, we must use the option:
a) import random b) random.h c) import.random d) random.random
2. The output of the following Python code is either 1 or 2.
import random

random.randint (1 , 2)
a) True b) False

3. What will be the output of the following Python function if the random module has already been
imported?

random.randint(3.5 ,7)
a) b) Any integer between 3.5 and 7, including 7
b) Any integer between 3.5 and 7, excluding 7
c) The integer closest to the mean of 3.5 and 7
d) Error

4. What will be the output of the following Python code?
random.randrange(0,91,5)

a) 18 b) 10 c) 79 d) 95

5. Which of the following is not a built in module in Python?
a) math b) os c) pi d) random

6. What will the following code result as?
import math
x = 100

93

print(x > 0 and math.sqrt(x))
a) True b) 1 c) 10 d) 10.0

7. What will the following code result as?

import statistics
seq = [10,20,20,30,12,10]
print(statistics.mean())

a) 30 b) 10 c) 17 d) 1

8. What may be the possible values printed by following statements?
import random
for I in range(3):

print(random.randint(10,18))
a) 13 12 10 b) 11 18 19 c) 10 9 18 d) 10 9 8

Answers:
1 2 3 4 5 6 7 8
A A d b c d c a

Q1) What is random module in Python?
Ans: Python Random module is an in-built module of Python that is used to generate random numbers in
Python.
Q2) Write a code fragment to generate a random floating number between 45.0 and 95.0. Print this number
along with its nearest integer greater than it.

Ans:

Output

import random
import math
fnum = random.random() * (95 - 45) + 45
inum = math.ceil(fnum)
print("Random Numbers between 45...95: ")
print(fnum)
print("Nearest higher integer : ", inum)

Random Numbers between 45...95:
56.31601558476624
Nearest higher integer : 57

Q2) Write a program to generate two random integers between 500 and 760. Print the average of these
number along with these numbers.

Ans:
import random
num1 = random.randint(500,760) - 500
num2 = random.randint(500,760) - 500
avg = (num1 + num2)/2
print("Number 1 : ", num1)
print("Number 2 : ", num2)

94

print("Average : ", avg)

Output

Ans:

Output

Number 1 : 147
Number 2 : 153
Average : 150.0

Q2) Given a list containing these values [22,13,28,13,22,25,7,13,25] . Write code to calculate mean,
median and mode of this list?

import statistics as s
L = [22,13,28,13,22,25,7,13,25]
LMean = s.mean(L)
LMedian = s.median(L)
LMode = s.mode(L)
print("List ")
print(L)
print("Mean : ", LMean)
print("Median : ", LMedian)
print("Mode : ", LMode)

List........
[22, 13, 28, 13, 22, 25, 7, 13, 25]
Mean : 18.666666666666668
Median : 22
Mode : 13

